Finite-order integration weights can be dangerous
نویسنده
چکیده
Finite-order weights have been introduced in recent years to describe the often occurring situation that multivariate integrands can be approximated by a sum of functions each depending only on a small subset of the variables. The aim of this paper is to demonstrate the danger of relying on this structure when designing lattice integration rules, if the true integrand has components lying outside the assumed finite-order function space. It does this by proving, for weights of order two, the existence of 3-dimensional lattice integration rules for which the worst case error is of order O(N−1/2), where N is the number of points, yet for which there exists a smooth 3-dimensional integrand for which the integration rule does not converge.
منابع مشابه
Finite-order weights imply tractability of multivariate integration
Multivariate integration of high dimension s occurs in many applications. In many such applications, for example in finance, integrands can often be approximated by sums of functions of just a few variables. In this situation the superposition (or effective) dimension is small, and we can model the problem with finite-order weights, where the weights describe the relative importance of each dis...
متن کاملInfinite-dimensional integration on weighted Hilbert spaces
We study the numerical integration problem for functions with infinitely many variables. The functions we want to integrate are from a reproducing kernel Hilbert space which is endowed with a weighted norm. We study the worst case ε-complexity which is defined as the minimal cost among all algorithms whose worst case error over the Hilbert space unit ball is at most ε. Here we assume that the c...
متن کاملhp-Spectral Finite Element Analysis of Shear Deformable Beams and Plates
There are different finite element models in place for predicting the bending behavior of shear deformable beams and plates. Mostly, the literature abounds with traditional equi-spaced Langrange based low order finite element approximations using displacement formulations. However, the finite element models of Timoshenko beams and Mindlin plates with linear interpolation of all generalized disp...
متن کاملA novel modification of decouple scaled boundary finite element method in fracture mechanics problems
In fracture mechanics and failure analysis, cracked media energy and consequently stress intensity factors (SIFs) play a crucial and significant role. Based on linear elastic fracture mechanics (LEFM), the SIFs and energy of cracked media may be estimated. This study presents the novel modification of decoupled scaled boundary finite element method (DSBFEM) to model cracked media. In this metho...
متن کاملRealizable high-order finite-volume schemes for quadrature-based moment methods applied to diffusion population balance equations
Dilute gas–particle flows can be described by a kinetic equation containing terms for spatial transport, gravity, fluid drag and particle–particle collisions. However, direct numerical solution of kinetic equations is often infeasible because of the large number of independent variables. An alternative is to reformulate the problem in terms of the moments of the velocity distribution. Recently,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007